Mutation of protein kinase C phosphorylation site S1076 on alpha-subunits affects BK(Ca) channel activity in HEK-293 cells.

نویسندگان

  • Shu Zhu
  • Darren D Browning
  • Richard E White
  • David Fulton
  • Scott A Barman
چکیده

Large conductance, calcium- and voltage-activated potassium (BK(Ca)) channels are important modulators of pulmonary vascular smooth muscle membrane potential, and phosphorylation of BK(Ca) channels by protein kinases regulates pulmonary arterial smooth muscle function. However, little is known about the effect of phosphorylating specific channel subunits on BK(Ca) channel activity. The present study was done to determine the effect of mutating protein kinase C (PKC) phosphorylation site serine 1076 (S1076) on transfected human BK(Ca) channel alpha-subunits in human embryonic kidney (HEK-293) cells, a heterologous expression system devoid of endogenous BK(Ca) channels. Results showed that mutating S1076 altered the effect of PKC activation on BK(Ca) channels in HEK-293 cells. Specifically, the phospho-deficient mutation BK(Ca)-alpha(S1076A)/beta(1) attenuated the excitatory effect of the PKC activator phorbol myristate acetate (PMA) on BK(Ca) channels, whereas the phospho-mimetic mutation BK(Ca)-alpha(S1076E)/beta(1) increased the excitatory effect of PMA on BK(Ca) channels. In addition, the phospho-null mutation S1076A blocked the activating effect of cGMP-dependent protein kinase G (PKG) on BK(Ca) channels. Collectively, these results suggest that specific putative PKC phosphorylation site(s) on human BK(Ca) channel alpha-subunits influences BK(Ca) channel activity, which may subsequently alter pulmonary vascular smooth muscle function and tone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct stoichiometry of BKCa channel tetramer phosphorylation specifies channel activation and inhibition by cAMP-dependent protein kinase.

Large conductance voltage- and calcium-activated potassium (BK(Ca)) channels are important signaling molecules that are regulated by multiple protein kinases and protein phosphatases at multiple sites. The pore-forming alpha-subunits, derived from a single gene that undergoes extensive alternative pre-mRNA splicing, assemble as tetramers. Although consensus phosphorylation sites have been ident...

متن کامل

Tyrphostin AG556 increases the activity of large conductance Ca2+‐activated K+ channels by inhibiting epidermal growth factor receptor tyrosine kinase

The present study was designed to investigate whether large conductance Ca2+ -activated K+ (BK) channels were regulated by epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase. BK current and channel tyrosine phosphorylation level were measured in BK-HEK 293 cells expressing both functional α-subunits and the auxiliary β1-subunits using electrophysiology, immunoprecipitation and Wester...

متن کامل

L-type calcium channel alpha-subunit and protein kinase inhibitors modulate Rem-mediated regulation of current.

Cardiac voltage-gated L-type Ca channels (Ca(V)) are multiprotein complexes, including accessory subunits such as Ca(V)beta2 that increase current expression. Recently, members of the Rad and Gem/Kir-related family of small GTPases have been shown to decrease current, although the mechanism remains poorly defined. In this study, we evaluated the contribution of the L-type Ca channel alpha-subun...

متن کامل

The calcium-dependent activity of large-conductance, calcium-activated K+ channels is enhanced by Pyk2- and Hck-induced tyrosine phosphorylation.

Recent results showing that large-conductance, calcium-activated K(+) (BK(Ca)) channels undergo direct tyrosine phosphorylation in the presence of c-Src tyrosine kinase have suggested the involvement of these channels in Src-mediated signaling pathways. Given the important role for c-Src in integrin-mediated signal transduction, we have examined the potential regulation of BK(Ca) channels by pr...

متن کامل

Modulation of the cardiac sodium channel NaV1.5 by Fyn, a Src family tyrosine kinase.

Dynamic modulation of ion channels can produce dramatic alterations of electrical excitability in cardiac myocytes. This study addresses the effects of the Src family tyrosine kinase Fyn on Na(V)1.5 cardiac sodium channels. Sodium currents were acquired by whole cell recording on HEK-293 cells transiently expressing Na(V)1.5. Acute treatment of cells with insulin caused a depolarizing shift in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 297 4  شماره 

صفحات  -

تاریخ انتشار 2009